This paper addresses one technique for acquiring subsea corrosion rate data. Subsea monitoring provides the advantage of measuring the corrosion inhibitor efficacy at the point of injection, rather than inferring performance from platform measurements. The internal condition of pipelines can be monitored in a variety of ways. The optimum monitoring technique will change with pipeline age, location, accessibility, and operating conditions. More importantly, the applicable methods may change based on the type of information required. For evaluation of corrosion inhibitor performance a high-sensitivity corrosion monitor is required. A prototype dual-element, electric-resistance probe has been evaluated for pressure and temperature stability under simulated Britannia subsea operating conditions. The probe functioned well under all conditions over an extensive test period. As expected, temperature had the greatest impact on the stability of the corrosion measurements. Interpretation of the relative response of the dual probes to the variety of test conditions is useful in evaluating the validity of field data and the
tinctionality of the probe. Issues, revealed by the testing program, included anomalous data points and fluid behind the probe elements. The anomalous data were easily identifiable, but disrupted the automated calculation of the corrosion rate. A loose connection caused the anomalous data points. Ingress of fluid behind the probe element is still a concern for long term exposures.
Keywords: Corrosion Monitoring, Subsea, Electric Resistance Probe, ER Probe, Design, Construction, Testing