Electrochemical and microbiological effects of biofilms formed on different types of stainless steels in natural sea water were studied. A flow-through model ecosystem was used to generate biofilms in the laboratory. The ecosystem was modeled to maintain the levels of organic and inorganic carbon close to those in the sea by periodical illumination. Natural brackish water was used. The open circuit potentials in the laboratory were recorded for 6 to 10 weeks. The biofilms formed were analyzed by microbial cultivation, measurement of Adenosine triphosphate (ATP) ond by different microscopical methods (epifluorescence and scanning electron microscopy). Four field test were performed in Baltic Sea during the period of May 1993 to April 1996. Ennoblement of the all stainless steels studied occurred in Baltic Sea at the depth of 15 m irrespective of the season and the temperature of the sea water, Only when immersed close to the surface (at tbe depth of 0.4 m) the increase of open circuit potential of material S31600 was not observed. One reason for that might be the dominance of algae in the biotilm, The experiments showed that the ennoblement of stainless steels occurred in the laboratory reproducibly and similarly to that observed in the field provided that the flow rate was sufficiently high (5 to 30 mm/s). These laboratory tests did not indicate an enhancement of corrosion due to potential ennoblement.
Keywords: stainless steel, biofilm, ennoblement, sea water, microbiologically induced corrosion