The development of a potentiostatic method for determining the potential independent Critical Pitting Temperature (CPT) using the Avesta Cell is presented. The new potentiostatic method has been used to determine the CPT for austenitic stainless steels. The precision of the potentiostatic method of approximately +- 2 °C is close to that of the traditional potentiodynamic method. The time required to determine a CPT is much shorter than when using the potentiodynamic method. A CPT is obtained within 1.5 to 3 hours for each specimen. The influence of various experimental parameters such as electrochemical potential, evaluation criteria for the CPT, test area, stabilization time prior to polarization and inert gas purging is described. The lack of sensitivity towards many of these parameters as well as the high reproducibility obtained is associated with fundamentals of the pitting process. It is argued that the potential independent CPT characterizes the stable propagating pitting event as opposed to the potential dependent CPT or pitting potentials, which to a larger extent are affected by the nucleation part of the pitting process.
Keywords: stainless steel, pitting corrosion, electrochemical testing, critical pitting temperature, experimental parameters, potentiostatic testing, potentiodynamic testing