Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

08313 Corrosion Resistance of Alternative Reinforcing Bars: An Accelerated Test

Product Number: 51300-08313-SG
ISBN: 08313 2008 CP
Author: Fushuang Cui, Paul D. Krauss, and Scott Humphreys
Publication Date: 2008
$0.00
$20.00
$20.00
Various types of solid and coated reinforcing bars, including stainless steel types 316LN, 2205, 2201 and 3Cr12; a proprietary low-carbon, chromium alloy (ASTM A1035); epoxycoated both recently produced and 15-year old bars extracted from a northern bridge deck; and zinc-coated (galvanized), were simultaneously exposed to 5 % NaCl solution at 35oC in a salt-spray (fog) apparatus (ASTM B 117) for up to 4 weeks. Conventional carbon steel reinforcing bars were included as a control. The bar condition was visually inspected periodically and weight loss analyses were performed at 1, 2 and 4 weeks. Based on weight loss data, the corrosion resistance of the solid bars was ranked as follows: 316LN and 2205 > 2201 > 3Cr12 and A 1035 > carbon steel. Galvanized bars showed some delay in corrosion of the underlying steel, however, the zinc coating was quickly consumed and the average corrosion rate was comparable to that of carbon steel bars. In contrast, corrosion on all the epoxy-coated bars occurred only at defects and the average weight loss was nearly zero. The relative corrosion resistance ranking of the tested bars is consistent with the results reported in literature from more intensive testing regimes. Therefore, this highly accelerated test program provided a simple, quick, and useful comparison of the corrosion resistance of the tested steel reinforcement.
Various types of solid and coated reinforcing bars, including stainless steel types 316LN, 2205, 2201 and 3Cr12; a proprietary low-carbon, chromium alloy (ASTM A1035); epoxycoated both recently produced and 15-year old bars extracted from a northern bridge deck; and zinc-coated (galvanized), were simultaneously exposed to 5 % NaCl solution at 35oC in a salt-spray (fog) apparatus (ASTM B 117) for up to 4 weeks. Conventional carbon steel reinforcing bars were included as a control. The bar condition was visually inspected periodically and weight loss analyses were performed at 1, 2 and 4 weeks. Based on weight loss data, the corrosion resistance of the solid bars was ranked as follows: 316LN and 2205 > 2201 > 3Cr12 and A 1035 > carbon steel. Galvanized bars showed some delay in corrosion of the underlying steel, however, the zinc coating was quickly consumed and the average corrosion rate was comparable to that of carbon steel bars. In contrast, corrosion on all the epoxy-coated bars occurred only at defects and the average weight loss was nearly zero. The relative corrosion resistance ranking of the tested bars is consistent with the results reported in literature from more intensive testing regimes. Therefore, this highly accelerated test program provided a simple, quick, and useful comparison of the corrosion resistance of the tested steel reinforcement.
Product tags
Also Purchased
Picture for 08300 Implementation of Advanced Electronic Techniques for Remote Monitoring of Cathodic Protection
Available for download

08300 Implementation of Advanced Electronic Techniques for Remote Monitoring of Cathodic Protection, Scour and Environmental Conditions for Marine Bridges in Florida

Product Number: 51300-08300-SG
ISBN: 08300 2008 CP
Author: Richard J. Kessler, Rodney G. Powers, and Ivan R. Lasa
Publication Date: 2008
$20.00
Picture for 08310 Recent Developments in Data-Logging Covermeters & the Interpretation of Results
Available for download

08310 Recent Developments in Data-Logging Covermeters & the Interpretation of Results

Product Number: 51300-08310-SG
ISBN: 08310 2008 CP
Author: JF Fletcher
Publication Date: 2008
$20.00