The corrosion behavior of binary Fe-Cr (10-40%Cr) and Ni-Cr alloys (10-30%Cr) has been examined in 1mM-HCl+0.6M-H2O2 at 500°C and 29.4MPa. By comparing the weight loss due to oxidation with that due to dissolution and examining the time dependence of the weight losses, it was found that oxidation was a dominant corrosion process of the alloys at 500°C. The corrosion rate decreased with increasing Cr content and reached a minimum at 30% and 20% Cr for Fe-Cr and Ni-Cr alloys, respectively. A further increase in the Cr content increased the corrosion rate. These results can be explained by taking account of both beneficial and detrimental effects of Cr: increasing the Cr content improves oxidation resistance but accelerates transpassive dissolution at 500°C. The addition of a small amount of Mo (1-2%) to Fe-Cr alloys (> 25%Cr) was found to be effective for further improvements of the corrosion resistance of the alloys. The corrosion tests of Fe-Cr alloys were performed at various temperatures between 300 and 500°C. The results of the tests suggested that the transpassive dissolution rate of Cr was high at temperatures around 350°C and above 500°C, but was low at temperatures of 400-450°C. At these temperatures, which is just above the critical point, the corrosion resistance of Fe-Cr alloys was improved significantly with increasing Cr content and no detrimental effect of Cr could be observed even at the Cr contents as high as 40%.
Keywords: supercritical water oxidation, hydrochloric acid, Fe-Cr alloy, Ni-Cr alloy, oxidation, dissolution, pitting corrosion, transpassive dissolution.