Search
Filters
Close

02088 ASSESSMENT OF CORROSION IN LOW TOUGHNESS PIPE MATERIAL

Product Number: 51300-02088-SG
ISBN: 02088 2002 CP
Author: Julia Race and Stephen Peet
$0.00
$20.00
$20.00
Corrosion is an increasing problem in ageing pipelines world-wide, and the conditions under which a corrosion defect fails have been the subject of extensive world-wide research in the last 30 years. Various organisations have conducted full-scale tests on artificial and real corrosion defects, which have allowed the development of defect assessment criteria. In modern linepipe with high toughness, smooth corrosion defects will fail by ductile initiation and plastic collapse. In this case, the remaining strength of pipelines can be assessed using codified methods. However, for low toughness pipe material the dominant failure mode may be brittle fracture. This is of particular concern in older pipelines, in early Electric Resistance Welded (ERW) welded pipe and pipelines operating at low temperature. In this case, plastic collapse methods may be inappropriate and unconservative and careful consideration must be given to the selection of assessment methods. This paper reviews the available assessment methods for corrosion in low toughness pipe material and demonstrates how these methods are selected and applied to corrosion defects detected in intelligent pig inspections.
Corrosion is an increasing problem in ageing pipelines world-wide, and the conditions under which a corrosion defect fails have been the subject of extensive world-wide research in the last 30 years. Various organisations have conducted full-scale tests on artificial and real corrosion defects, which have allowed the development of defect assessment criteria. In modern linepipe with high toughness, smooth corrosion defects will fail by ductile initiation and plastic collapse. In this case, the remaining strength of pipelines can be assessed using codified methods. However, for low toughness pipe material the dominant failure mode may be brittle fracture. This is of particular concern in older pipelines, in early Electric Resistance Welded (ERW) welded pipe and pipelines operating at low temperature. In this case, plastic collapse methods may be inappropriate and unconservative and careful consideration must be given to the selection of assessment methods. This paper reviews the available assessment methods for corrosion in low toughness pipe material and demonstrates how these methods are selected and applied to corrosion defects detected in intelligent pig inspections.
PRICE BREAKS - The more you buy, the more you save
Quantity
1+
5+
Price
$20.00
$20.00
Product tags
Also Purchased
Picture for Fracture Toughness Testing Methods in H2S Containing Environment for Metallic Materials
Available for download
Picture for Factors Affecting Impact Toughness in Carbon Steels
Available for download

Factors Affecting Impact Toughness in Carbon Steels

Product Number: 51319-13361-SG
Author: Sangeetha Cathapuram
Publication Date: 2019
$20.00
Picture for Online Seam Treatment of ERW pipes for proper material selection, process control and toughness improvement
Available for download

Online Seam Treatment of ERW pipes for proper material selection, process control and toughness improvement

Product Number: MPWT19-14408
Author: C. Cincunegui, M. Coloschi, P. Marino, E. Martínez, and M. Valdez
Publication Date: 2019
$0.00

Electric Resistance Welded (ERW) pipes X60M / X65M API 5L PSL2, with resistance to ductile fracture propagation as per API 5L PSL2 Annex G [1] are achieved not only by setting the proper welding parameters and the steel cleanliness, but also by a combination of metallurgical processes affecting the final weld line and HAZ microstructure. The steel chemistry is the starting point to minimize the presence of inclusions, central segregation and the toughness impairment due to harmful elements, S, P, etc. on the pipe body, with a given casting and rolling technology. During the welding process, the right parameters combination is needed to avoid cold weld, penetrators, and other weld imperfections. At the last stage, the Seam Heat Treatment (SHT) has to be adjusted in a way that the steel response to the thermal cycles leads to the compliance of mechanical requirements at the weld line and Heat Affected Zone (HAZ). This heat treatment is performed through electromagnetic induction using several coils, which allows it to have a rapid and localized heating of the HAZ into the austenitic region, and that is followed by air cooling. The objective is to refine the structure and to eliminate brittle constituents around the weld line. As the SHT strongly affects the weld performance, the optimum processing conditions such as austenitization temperature and cooling rate may not be the same for all steel chemistry, and has to be carefully selected. The capability to model the thermal cycle after the ERW process and the understanding of the metallurgical behavior of different steel chemistries and dimensional configuration becomes the main target of any ERW pipe manufacturer aiming supply reliable Line Pipes as per API 5L PSL2 Annex G. In this work, a numerical thermal model of the SHT is presented along with validation and simulation results. A summary of metallurgical thermal cycle simulations by means of a Gleeble® 3500, applied on different steels is also included.