Hydrogen might cause severe degradation of supermartensitic stainless steels, if they are activated during exposure to sour environments. Consistent and comprehensive data for hydrogen transport in these materials are thus required to support, in particular, modelling of hydrogen assisted cracking as a part of life time assessment of welded steel components. In addition to previously published diffusion coefficients and subsurface concentrations of a supermartensitic stainless steel further data dependent on heat treatment are provided by this contribution. Furthermore, a higher alloyed material has been investigated in the state as received and also in the quenched condition, in order to approach the influences of chemical composition on hydrogen transport in supermartensitic stainless steels. With respect to welding it turned out that the diffusion coefficient and the subsurface concentration are markedly dependent on heat treatment of the materials. Keywords: hydrogen, low carbon martensitic stainless steel, diffusion coefficient, subsurface concentration, free corrosion, heat treatment, chemical composition